Hybrid Demand Forecasting and Monte Carlo Simulation for Retail Supply Chain Inventory Optimization

Authors

  • Diah Putri Kartikasari Universitas Islam Negeri Sumatera Utara Author
  • Tiara Ayu Triarta Tambak Universitas Islam Negeri Sumatera Utara Author
  • Aero Rizal Ridwanto Universitas Indonesia Author

DOI:

https://doi.org/10.65230/jitcos.v1i2.40

Keywords:

Monte Carlo Simulation, Demand Forecasting, Inventory Optimization, Retail Supply Chain, Stochastic Modeling

Abstract

Retail inventory optimization must balance service levels against holding, ordering, and stockout costs under uncertain demand and lead time. We develop an integrated framework that couples hybrid demand forecasting with Monte Carlo simulation (MCS) to evaluate continuous‑review policies. Historical daily sales are modeled using statistical baselines (naive and exponential smoothing) and gradient‑boosted trees with quantile objectives to obtain distributional forecasts. Predictive means and residual‑based dispersion calibrate a Negative Binomial demand model; because lead-time is not present in the dataset, we treat it as a scenario parameter in the simulator (baseline mean ~2 days, SD ~1 day) and probe it via sensitivity analyses. Using a representative retail subset, we simulate 90‑day horizons with 300 replications per item across a grid of values. Results reveal a convex cost–service frontier: (15,120) minimizes total cost in the tested grid, while (25,140) achieves the highest fill rate. Sensitivity analyses show costs are most responsive to safety stock and lead‑time variability. The framework links forecast uncertainty to inventory policy selection, offering a reproducible, data‑driven tool for practitioners and a baseline for future multi‑echelon and decision‑focused extensions.

References

Barron, Y. (2022). The continuous (S, s, Se) inventory model with dual sourcing and emergency orders. European Journal of Operational Research, 301(1), 18–38. https://doi.org/10.1016/j.ejor.2021.09.021

Douaioui, K., Allali, H., & Ilie, C. (2024). Machine learning and deep learning models for demand forecasting: A systematic review. Applied System Innovation, 7(5), 93. https://doi.org/10.3390/asi7050093

Elalem, Y. K., Maier, S., & Seifert, R. W. (2023). A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks. International Journal of Forecasting, 39(4), 1874–1894. https://doi.org/10.1016/j.ijforecast.2022.09.005

Feizabadi, J. (2022). Machine learning demand forecasting and supply chain performance. International Journal of Logistics Research and Applications, 25(2), 119–142. https://doi.org/10.1080/13675567.2020.1803246

Goltsos, T. E., Syntetos, A. A., Glock, C. H., & Ioannou, G. (2022). Inventory-forecasting: Mind the gap. European Journal of Operational Research, 299(2), 397–419. https://doi.org/10.1016/j.ejor.2021.07.040

Harifi, S., Khalilian, M., Mohammadzadeh, J., & Ebrahimnejad, S. (2021). Optimization in solving inventory control problem using nature inspired Emperor Penguins Colony algorithm. Journal of Intelligent Manufacturing, 32(5), 1361–1375. https://doi.org/10.1007/s10845-020-01616-8

Huber, J., Müller, S., Fleischmann, M., & Stuckenschmidt, H. (2019). A data-driven newsvendor problem: From data to decision. European Journal of Operational Research, 278(3), 904–915. https://doi.org/10.1016/j.ejor.2019.04.043

Kourentzes, N., Trapero, J., & Barrow, D. (2019). Optimising forecasting models for inventory planning. International Journal of Production Economics, 225, 107597. https://doi.org/10.1016/j.ijpe.2019.107597

Liu, Y., Kalaitzi, D., Wang, M., & Papanagnou, C. (2025). A Machine Learning Approach to Inventory Stockout Prediction. Journal of Digital Economy. https://doi.org/10.1016/j.jdec.2025.06.002

Makridakis, S., Petropoulos, F., & Spiliotis, E. (2022). The M5 competition: Conclusions. International Journal of Forecasting, 38(4), 1576–1582. https://doi.org/10.1016/j.ijforecast.2022.04.006

Patriarca, R., Di Gravio, G., Costantino, F., & Tronci, M. (2020). EOQ inventory model for perishable products under uncertainty. Production Engineering, 14(5–6), 601–612. https://doi.org/10.1007/s11740-020-00986-5

Pirayesh Neghab, D., Khayyati, S., & Karaesmen, F. (2022). An integrated data-driven method using deep learning for a newsvendor problem with unobservable features. European Journal of Operational Research, 302(2), 482–496. https://doi.org/10.1016/j.ejor.2021.12.047

Preil, D., & Krapp, M. (2022). Artificial intelligence-based inventory management: A Monte Carlo tree search approach. Annals of Operations Research, 308, 415–439. https://doi.org/10.1007/s10479-021-03935-2

Ribeiro, E. F., Polachini, T. C., Locali-Pereira, A. R., Janzantti, N. S., Quiles, A., Hernando, I., & Nicoletti, V. R. (2023). Storage Stability of Spray- and Freeze-Dried Chitosan-Based Pickering Emulsions Containing Roasted Coffee Oil: Color Evaluation, Lipid Oxidation, and Volatile Compounds. Processes, 11(4), 1048. https://doi.org/10.3390/pr11041048

Sina, L. B., Secco, C. A., Blazevic, M., & Nazemi, K. (2023). Hybrid forecasting methods: A systematic review. Electronics, 12(9), 2019. https://doi.org/10.3390/electronics12092019

Slama, I., Ben-Ammar, O., Dolgui, A., & Masmoudi, F. (2021). Genetic algorithm and Monte Carlo simulation for a stochastic capacitated disassembly lot-sizing problem under random lead times. Computers & Industrial Engineering, 159, 107468. https://doi.org/10.1016/j.cie.2021.107468

Taparia, V., Mishra, P., Gupta, N., & Kumar, D. (2023). Improved Demand Forecasting of a Retail Store Using a Hybrid Machine Learning Model. Journal of Graphic Era University, 12, 15–36. https://doi.org/10.13052/jgeu0975-1416.1212

Theodorou, E., Spiliotis, E., & Assimakopoulos, V. (2025). Forecast accuracy and inventory performance: Insights on their relationship from the M5 competition data. European Journal of Operational Research, 322(2), 414–426. https://doi.org/10.1016/j.ejor.2024.12.033

van der Haar, J. F., Wellens, A. P., Boute, R. N., & Basten, R. J. I. (2024). Supervised learning for integrated forecasting and inventory control. European Journal of Operational Research, 319(2), 573–586. https://doi.org/10.1016/j.ejor.2024.07.004

Visentin, A., Prestwich, S., Rossi, R., & Tarim, S. A. (2023). Stochastic dynamic programming heuristic for the (R, s, S) policy parameters computation. Computers & Operations Research, 158, 106289. https://doi.org/10.1016/j.cor.2023.106289

Downloads

Published

31-12-2025

How to Cite

Kartikasari, D. P., Tambak, T. A. T., & Ridwanto, A. R. (2025). Hybrid Demand Forecasting and Monte Carlo Simulation for Retail Supply Chain Inventory Optimization. JITCoS : Journal of Information Technology and Computer System, 1(2), 74-85. https://doi.org/10.65230/jitcos.v1i2.40