Monte Carlo Simulation for Rice Yield Risk Estimation Based on Weather and Soil Quality Factors

Authors

  • Nouval Khairi Universitas Islam Negeri Sumatera Utara Author
  • Muhammad Farhan Universitas Islam Negeri Sumatera Utara Author
  • Muhammad Zhilali Rahman Universitas Muhammadiyah Sumatera Utara Author

DOI:

https://doi.org/10.65230/jitcos.v1i2.36

Keywords:

Rice Production Risk, Monte Carlo Simulation, Weather Factors, Soil Quality, Agricultural Uncertainty

Abstract

This study applies Monte Carlo simulation to estimate rice yield risks in the Medan region during 2024 by incorporating key weather variables (temperature, rainfall, and humidity) and soil quality indicators (pH, water content, salinity, texture, and organic matter). Given the increasing impacts of climate change and land degradation on food security, a probabilistic approach is essential for quantifying uncertainties in crop production. Using 10,000 simulated scenarios based on historical and field-derived parameter distributions, the model estimates an average rice yield of approximately 4.2 tons per hectare with a standard deviation of 0.2 tons per hectare, indicating relatively stable production under normal conditions. However, 20% of the simulations produce yields below 3.9 tons per hectare, reflecting elevated risks of crop failure during adverse environmental situations. Sensitivity analysis identifies rainfall and soil pH as the most influential variables, where extreme deviations may reduce yields by up to 35%. These findings offer critical evidence for policymakers and farmers to develop adaptive management strategies aimed at safeguarding sustainable rice production in the region.

References

Aguslina, N., Noor, T. I., & Yusuf, M. N. (2022). Analysis risk production paddy rice fields in the village Karanganyar Subdistrict Cijeungjing Regency Ciamis. Journal Scientific Student Agroinfo Galuh, 9(1). https://doi.org/10.25157/jimag.v9i1.6665

Anggraini, S. D., & Nurcahyo, G. W. (2021). Prediction improvement amount customer with Monte Carlo simulation. Journal Informatics Economy Business, 3(3), 95–100. https://doi.org/10.37034/infeb.v3i3.92

Apridiansyah, Y., Veronika, N. D. M., & Putra, E. D. (2021). Prediction graduation student Faculty Technique Informatics University Muhammadiyah Bengkulu uses Naïve Bayes method. JSAI: Journal of Scientific and Applied Informatics, 4(2), 236–247. Retrieved from https://jurnal.umb.ac.id/index.php/JSAI/article/view/1701

Body Center Statistics North Sumatra Province. (2024, November 1). Area harvest paddy North Sumatra Province is estimated amounting to 419.09 thousand hectares with production paddy around 2.15 million tons of grain dry milled (GKG). Retrieved November 2, 2025, from https://sumut.bps.go.id/id/pressrelease/2024/11/01/1211/pada-2024--lebar-panen-padi-provinsi-sumatera-utara-diperkirakan-sebesar-419-09-ribu-hektare--dengan-production-padi-approximately-2-15-million-ton-gabah-kering-giling--gkg-.html

BMKG. (2024). Weather data Medan daily 2024. Retrieved from https://dataonline.bmkg.go.id/data-harian

Desi, E., Aliyah, S., Lubis, C. P., Elhias, M. A. N., & Tahel, F. (2024). Monte Carlo simulation in predict level surge registration booster vaccine at the Community Health Center Martubung. Journal Technology Information and Knowledge Computers, 11(3), 579–586. https://doi.org/10.25126/jtiik.937570

Harahap, L. M., Manurung, Y. I. B., Situngkir, J. B., & Simanungkalit, N. A. (2024). Management risk climate in sector agriculture: Strategy and implementation. Journal Knowledge Management, Business and Economics (JIMBE), 1(6), 117–126. https://doi.org/0.59971/jimbe.v1i5.217

Hidayah, H. (2022). Monte Carlo method for predict amount visitor stay overnight. Journal Information and Technology, 4(1), 76–80. Retrieved from https://www.jidt.org/index.php/jidt/article/view/193

Hasugian, I. A., Muhyi, K., & Firlidany, N. (2022). Monte Carlo simulation in predict amount delivery and total income. Bulletin Main Engineering, 17(2). https://doi.org/10.30743/but.v17i2.4952

Iskandar, M. J., Prasetyowati, R. E., & Anwar, M. (2024). Risk production farming corporate farming model of rice in Central Java. SEPA: Journal Social Economy Agriculture and Agribusiness, 21(1), 42–51. https://doi.org/10.20961/sepa.v21i1.61481

Priyantono, V. R. A., Maruddani, D. A. I., & Utami, I. T. (2023). Analysis optimal portfolio using index model single and measurement of value at risk with Monte Carlo simulation: Study case of exchange traded funds on the Indonesian Stock Exchange period January 2021–June 2022. Gaussian Journal, 12(2), 158–165. https://doi.org/10.14710/j.gauss.12.2.158-165

Putra, R. D., Apridiansyah, Y., & Sahputra, E. (2022). Implementation Monte Carlo method on simulation prediction amount candidate student new University Muhammadiyah Bengkulu. Processor: Journal Scientific System Information, Technology Information and System Computer, 17(2), 74–81. Retrieved from https://ejournal.unama.ac.id/index.php/processor/article/view/510

Prayoga, R., & Lubis, M. M. (2024). Analysis risk production farming paddy organic. Journal Social Economy Agriculture, 20(3). https://doi.org/10.20956/jsep.v20i3.36533

Raesi, S., Putri, A., & Sinensis, V. (2025). Approach fishbone analysis for identification risk production rice in the sub-district Realm Coast Regency South Coast. Journal Agriculture Science, 9(1). Retrieved from https://ejournal.unand.ac.id/index.php/ags/article/view/2751 doi: 10.36355/jas.v9i1.1762

Ramandilla, P., B., Z., & Pelly, D. A. (2025). Impact change climate to quality land and productivity agriculture on the island Java. Journal Psychosocial and Education, 1(2), 1238–1246. Retrieved from https://publisherqu.com/index.php/psikosospen/article/view/2751

Wardani, M., Rahmaddiansyah, R., & Agussabti, A. (2023). Analysis comparison risk farming paddy on various alternative choice innovation use Monte Carlo simulation. Journal Scientific Student Agriculture, 8(3), 221–227. Retrieved from https://jim.usk.ac.id/JFP/article/view/26607/12420

Downloads

Published

31-12-2025

How to Cite

Nouval Khairi, Muhammad Farhan, & Rahman, M. Z. (2025). Monte Carlo Simulation for Rice Yield Risk Estimation Based on Weather and Soil Quality Factors. JITCoS : Journal of Information Technology and Computer System, 1(2), 55-63. https://doi.org/10.65230/jitcos.v1i2.36

Similar Articles

You may also start an advanced similarity search for this article.